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LETTER TO THE EDITOR 

Intermittency, stochastic growth and phase transition in 
a simple deterministic partial differential equation with a 
singular term 
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t ConIpUter and Automation Institute of HAS. Budapest, POB 63, 1518 Hungary 
$ Department of Atomic Physics, EONOs University, Budapest, Puskin U 5-7, IO88 Hungary 

Received 13 March 1995 

Abstract. We show by numerical integration that the discmuzed version of simple deterministic 
pmial differential equations with singular terms proposed by zhang exhibit rich spatio-lemponl 
behaviour representing a mixture ojstochostic and deteminisfic regimes. Varying the relative 
weight B of the singular term we haw been able to detect transitions in the global behaviour 
of the solutions by determining their total width tu([). In pmicular, we have found intermittent 
solutions as well as a power-law dependence of W = ~ ( t  -, m) an B.  

The emergence of random or random-like behaviour in phenomena formally described by 
deterministic equations has grown into a much studied field of physics during the last decade. 
The prototype of such processes is turbulence which, being a fundamental phenomenon in 
nature, has stimulated extensive theoretical efforts to solve the following beautiful problem: 
what are the actual mechanisms producing a complex, stochastic spatio-temporal behaviour 
in a viscous flow beyond a given value of some characteristic parameter? As a simpler case 
of the original question, one can consider spatially homogeneous systems with complicated 
temporal dependence described by ordinary differential equations. 

For this latter type of stochastic behaviour, much has been understood from the studies 
of simple systems of nonlinear differential equations and from various simple mappings. 
The investigation of the so-called chaotic phenomena has lead to a transparent picture of the 
mechanisms through which deterministic equations may result in a behaviour intermittent or 
stochastic in time [l]. However, when one is interested in complex dependences in~space as 
well, it is necessary to consider partial differential equations (PDES) or cellular-automata-type 
discretized models. 

One of the possible strategies for understanding spatio-temporal complexity is to 
investigate'simple model equations resulting in chaotic or turbulent-like pattems [Z]. The 
point is that the Navier-Stokes equations describing the flow of viscous fluids are far too 
complicated to allow detailed analytic or even numerical studies in the relevant parameter 
regions. To investigate mechanisms and demonstrate the birth of complicated motion in 
space (z) and time (f) several nonlinear partial differential equations have been suggested, 
including the complex Ginzburg-Landau equation [2] or the Kuramoto-Shivashinski (KS) 
[3-5] equation. I t  has been argued that the latter equation (ah/& = -V2h + (Vh('- V4h) 
describes the propagation of flame fronts. The simultaneous effects of the unstable, nonlinear 
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and the stabilizing terms in: the Ks eauation have been shown to result in chaotic spatio- 
temporal behaviour of the sblutions [6,7], which are fractally rough on large length scales 
rs-101. 

It should be pointed out that in an interesting recent approach to d-dimensional 
complex spatio-temporal behaviour the various functions associated with these structures 
are considered as wrinkling (growing rough) surfaces in a (d + 1)-dimensional space [ll].  
This development connects the studies of growing fractal surfaces [12-141 to the research of 
the properties of turbulenceIike phenomena since the above-mentioned (d+ 1)-dimensional 
surfaces can be described in terms of fractal geometry. 

From here we conclude that numerical studies of simple deterministic PDEs of the sort 
used to describe the wrinkling of growing surfaces are expected to be valuable from the 
point of understanding how stochastic spatio-temporal behaviour emerges in more complex 
deterministic processes. 

In this letter we shall consider perhaps the simplest family of deterministic PDEs 
producing growing fractal surfaces, These equations, originally proposed by Zhang have 
the form [ 15-17] 

-- - V*h(x, t) + singular term ah(x, t )  
at 

where several forms of the singular term can be used, including 

IVhla with LY < 1 

or 

MlVhI). (3) 

In particular, in this letter we shall pay most attention to the equation 

ah 
-=V*h-BIn(lVhl+A) 
at (4) 

where the parameter A z 0 is used to control the largest possible value of the singulw term, 
while E is introduced to monitor the relative strength of the singular term. In this letter we 
do not discuss the possible origins of a singular term. 'Zhang 1151 argued that the complex 
directed-polymer problem leads to an equation analogous to (1). Here we simply assume 
that the simultaneous effects  of more complicated mechanisms can under some conditions 
be accounted for by a simple singular term of the form w& are considering. The time 
dependence of the roughness W of suifaces generated by (1) with (3) was investigated by 
Zhang 1151 who found that W - ts with fl  0.2. Following Zhang's suggestion, Amar and 
Family 1181 numerically integrated (1) with (2) f o r a  = 4. In this case (2) does not diverge 
as Vh + 0, however, the corresponding term is unstable (in this letter we shall consider 
singular terms diverging as Vh + 0). They determined fl  and the Lyapunov exponents 
corresponding to the chaotic behaviour of (1) with (2). They also observed a grooved phase 
characterized by occasionally occurring and disappearing linear parts embedded in the rough 
interface. 

Our main goal is to demonshate the various interesting phenomena which are exhibited 
by (4) as E is incrensedfrom 0. We shall use the following approach: (i) start with a random 
or some simple initial surface (no relevant difference has been seen between the two kinds 
of simulation results), (ii) numerically integrate the equation using a simple discretization 
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scheme (iii) evaluate the data in terms of the surface roughness (the total width) of the 
advancing surface given by the function h(r).  all our shulations are carried out in a 
(1 + 1)-dimensional strip with periodic boundary conditions. 

We integrated (4) using the discretization scheme 

h ( x , t + ~ t ) = h ( ~ , r ) + ~ t { h ( ~ - 1 , ' t ) - 2 h ( x , r ) + h ( x + 1 , r ) )  
- BAr{ln[l(h(x + 1 .0  - h(x - 1, t)l + AI} (5) 

where for the integration'step At in time, in most cases we used 0.05 (the results did not 
depend on Ar for Ar -= 0.1). Thus, we study the lattice version of (4) which has been shown 
to be fundamentally different from the continuous one [15, 171. Since we are considering 
periodic boundary conditions the solutions must have extrema (or at least one extremum 
point). In the case of continuous solutions at an extremum point either the term In([Vhl) 
(smooth extremum) or the term VZh (sharp kink) diverge. Discretization eliminates these 
sorts of divergences because .starting with random initial conditions the finite difference 
expression for the gradient takes on the value Vh = 0 with zero probability while for V2h 
it is always finite even at the~shqes t  extrema. The width of the strip was typically L = 512 
grid points, but we have also carried out simulations for L = 256 and L = 1024 to. check 
whether there is any significant size dependence in our calculations. The parameter A was 
kept constant and B. -the relative weight of the singular term, was increased gradually from 
zero. The initial condition h(x ,  0) was a random surface with heights uniformly distributed 
between 0.0 and 0.01. 

Our findings are demonstrated in figures 1-4. First we present (figures I@&@)) sets 
of actual surface configurations for various B to illustrate $e qualitative behaviour of the 
solutions. 

(i) Naturally, for B = 0 the surface becomes perfectly smoorh as f + 00 since, as can be 
seen from a trivial linear stability analysis, the surface-tension-like term V2h leads to 
the dying out of, the perturbations. 

(ii) As B becomes larger, at places where Vh is approximately zero the term B In(lVhl+A) 
is close  to^ B In(A) which, for A << 1, represents a large perturbation to the local 
velocity of the advancing surface. The strength of this perturbation depends sensitively 
on how close Vh is to zero at the given discretization node and this feature, through 
the nonlinearity of the dependence of the velocity on the local slope, results in the 
roughening of the surface (figure I@)). 

(iii)For B > Br. the sudace,becomes piecewise linear, consisting of snaight line segments 
of a given slope (figure I@)). It is natural that the singular term dominated regime is 
made of straight line segments which (a) minimize the number of points where Vh = 0 
and, @) correspond to a trivial steidy state because for these segments VZh = 0 and 
Vh = constant. 

(iv) Perhaps most interestingly, the crossover from stochastic to piecewise behaviour is 
accompanied by a phenomenon analogous to inrermirrency: periods of almost perfectly 
regular (piecewise) growth regimes are intemipted with intervals of stochastic growth 
(figure I@)). As an intermediate regime we can also observe surface evolution during 
which parts of the surface become piecewise linear and turn random at later stages while 
the rest of the surface remains disordered (figure l(d)). 

In order to describe the above changes in the spatio-temporal behaviour in a more 
quantitative manner we calculate the total width of the surfaces w2(r) = (h') - (h)', where 
the averaging is made over the h ( x )  values for x = 1,. . . L at time r .  The infehifrenr 

, 
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( a )  

Figure 1. Subsequent kapshols' of the evolving surface oblained by numerically integrating 
(4) for (a) L = 512. A = 0.0002 and B = 0.002: (b)  B = 0.0053; (e) B = 0.0061 and 
(d )  B = 0.01. All surfaces have been shifted by an amount -C(B)r (this is equivalent to 
including an extra, irrelevant term -C into the RHS of (4)) in order to show many surfaces 
(othenvise separated by a much larger gap) in the available area of a hgw.  In addition. the 
solutions are 'ruetched' in the venical direction (multiplied by a factor, depending on B,  in the 
range of 200-2000 to enhance the derails). 

0050 

Figure 2. The total width of the growing surfaces w(r) 
as a function of time for A = 0.002 and B = 0.0061. 
The intermittent o a t w  of the solution is demonswed 
by the periods of steady-slate regime (relatively large, 
mnstanr value of w corresponding to a piecewise 

0 1250 2500 ~ 3740 ' 5mo linear solution~exising for some time) intempted by 

4) 
0.025 

0.wo 

t stochastically fluctuating time dependence, 

nature of the solution of (4) for E = 0.0061 is demonstrated in figure 2. Intervals of the 
steady-state regime (relatively large constant value of w corresponding to a piecewise linear 
solution existing for some time) are interrupted by stochastically changing behaviour. 

Figure 3(u) shows how W = w(t + CO) depends on the relative weight E of the 
nonlinear term for A = O.OOO1. In this plot the log(W) values approximately follow two 
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~ . .  . .  0 
Figure 3. The dependence of the steady-state width W 
00 the weight of the singular term B for (1) with term 
(3). (a )  A = 0.00001, (b) A = 0. The approximately 
straight part indicates scaling over a limited region of 
the B values. The slope of the straight lines in (a)  are 
approximately 1 and 3. while in (b) the slope is qual  
to 1. (c) Displays the same plot for (I), but with a 
singular term IVhl-ln. Here the data scale according 
to an exponent (slope of the tine) approximately equal 
to 0.68. These results were obtained by averaging over 
100 mm and ZM) surfaceshun. 

(C) 

- 1  
log w 

-2 

-3 -' -4 -3 -2 -' 
log B 

I Firmre 4. The heiat-height correlation function c(x) 
f& A = 0.0002 and B = 0.002. The self-Affine fractal 
n a t a  of the growing surface is indicated by the suaight 

1 2 3 part in the plot. The slope corresponds to a roughness 
exponent H z 0.7. log z 

-4.00 
0 

straight lines as a function of log(B) indicating a power-law-like dependence of the total 
surface width in a certain range of the pirameter E .  For small B the slope is about 3, 
while for larger B the slope is close to 1. As discussed above the discretized version of 
the term ln(lVh1) never becomes equal to infinity; in the simulations the role of A is to 
introduce the largest possible value for the nonlinear term. Thus, the size of the scaling 
region and the value of B at which the crossover takes place depend on the value of A.  
Figure 3(b) shows the results for A = 0. In this case the data fall onto a straight line over 
many decades because the term In((VR() can assume much larger (but still finite) values 
than ln(lVh + AI) for A =- 0. Figure 3(c) displays the total width versus E for (1) with 
a singular term ElVh + AI-'/' demonstrating that the behaviour of W is essentially the 
same independently of the actual form of the singular term. The slope corresponding to 
the surprisingly straight set of data is e 0.68. The extension of this behaviour depends on 
the actual value of A .  Thus, B plays the role of a control parameter and the change in 
the behaviour can be interpreted in terms of a morphological phase transition of the rough 
surface [U, 141. The value of the parameter A has the simple effect of a scaling cut-off for 
smaller B. As A + 0 the almost perfect 'scaling behaviour extends over many orders of 
magnitude. 
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Finally, we have investigated the geometry of the surface by calculating the height- 
height correlation function (for some t )  c(x) = ( Ih(x '+x)  - h ( ~ ' ) l ) ~ ,  [12-14]. The fractal 
roughness of the growing surface for B = 0.002 is indicated by the straight part in the plot 
of logc(x) as a function of x (figure 4). The corresponding roughness exponent~is H Ei: 0.7, 
where H is defined by the expression c(x) - x". 

In conclusion, we have shown that the discretized version of simple deterministic partial 
differential equations with singular terms (Zhang equations) exhibit a behaviour which is an 
interesting mixture of stochastic and deterministic regimes. Varying the relative strength B 
of the singular term we have been able to detect transitions in the global behaviour of the 
solutions in analogy with some viscous flows in which changes from laminar to intermittent 
and turbulent regimes take place as the Reynolds number is increased. In our case the 
emergence of the new type of solution depends on B as a power law whh a well defined 
exponent. The piecewise linear solution we find numerically may be related to the so-called 
groove instability observed in sever+ surface growth models. 

We thank Y-C Zhang for his many helpful remarks. This work was supported by the 
Hungarian Research Foundation grants no T4439 and T4374. M Vicsek thanks D Wolf for 
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